.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_intermediate_custom_function_conv_bn_tutorial.py: Fusing Convolution and Batch Norm using Custom Function ======================================================= Fusing adjacent convolution and batch norm layers together is typically an inference-time optimization to improve run-time. It is usually achieved by eliminating the batch norm layer entirely and updating the weight and bias of the preceding convolution [0]. However, this technique is not applicable for training models. In this tutorial, we will show a different technique to fuse the two layers that can be applied during training. Rather than improved runtime, the objective of this optimization is to reduce memory usage. The idea behind this optimization is to see that both convolution and batch norm (as well as many other ops) need to save a copy of their input during forward for the backward pass. For large batch sizes, these saved inputs are responsible for most of your memory usage, so being able to avoid allocating another input tensor for every convolution batch norm pair can be a significant reduction. In this tutorial, we avoid this extra allocation by combining convolution and batch norm into a single layer (as a custom function). In the forward of this combined layer, we perform normal convolution and batch norm as-is, with the only difference being that we will only save the inputs to the convolution. To obtain the input of batch norm, which is necessary to backward through it, we recompute convolution forward again during the backward pass. It is important to note that the usage of this optimization is situational. Though (by avoiding one buffer saved) we always reduce the memory allocated at the end of the forward pass, there are cases when the *peak* memory allocated may not actually be reduced. See the final section for more details. For simplicity, in this tutorial we hardcode `bias=False`, `stride=1`, `padding=0`, `dilation=1`, and `groups=1` for Conv2D. For BatchNorm2D, we hardcode `eps=1e-3`, `momentum=0.1`, `affine=False`, and `track_running_statistics=False`. Another small difference is that we add epsilon in the denomator outside of the square root in the computation of batch norm. [0] https://nenadmarkus.com/p/fusing-batchnorm-and-conv/ Backward Formula Implementation for Convolution ------------------------------------------------------------------- Implementing a custom function requires us to implement the backward ourselves. In this case, we need both the backward formulas for Conv2D and BatchNorm2D. Eventually we'd chain them together in our unified backward function, but below we first implement them as their own custom functions so we can validate their correctness individually .. code-block:: default import torch from torch.autograd.function import once_differentiable import torch.nn.functional as F def convolution_backward(grad_out, X, weight): grad_input = F.conv2d(X.transpose(0, 1), grad_out.transpose(0, 1)).transpose(0, 1) grad_X = F.conv_transpose2d(grad_out, weight) return grad_X, grad_input class Conv2D(torch.autograd.Function): @staticmethod def forward(ctx, X, weight): ctx.save_for_backward(X, weight) return F.conv2d(X, weight) # Use @once_differentiable by default unless we intend to double backward @staticmethod @once_differentiable def backward(ctx, grad_out): X, weight = ctx.saved_tensors return convolution_backward(grad_out, X, weight) When testing with gradcheck, it is important to use double precision .. code-block:: default weight = torch.rand(5, 3, 3, 3, requires_grad=True, dtype=torch.double) X = torch.rand(10, 3, 7, 7, requires_grad=True, dtype=torch.double) torch.autograd.gradcheck(Conv2D.apply, (X, weight)) Backward Formula Implementation for Batch Norm ------------------------------------------------------------------- Batch Norm has two modes: training and eval mode. In training mode the sample statistics are a function of the inputs. In eval mode, we use the saved running statistics, which are not a function of the inputs. This makes non-training mode's backward significantly simpler. Below we implement and test only the training mode case. .. code-block:: default def unsqueeze_all(t): # Helper function to unsqueeze all the dimensions that we reduce over return t[None, :, None, None] def batch_norm_backward(grad_out, X, sum, sqrt_var, N, eps): # We use the formula: out = (X - mean(X)) / (sqrt(var(X)) + eps) # in batch norm 2d's forward. To simplify our derivation, we follow the # chain rule and compute the gradients as follows before accumulating # them all into a final grad_input. # 1) 'grad of out wrt var(X)' * 'grad of var(X) wrt X' # 2) 'grad of out wrt mean(X)' * 'grad of mean(X) wrt X' # 3) 'grad of out wrt X in the numerator' * 'grad of X wrt X' # We then rewrite the formulas to use as few extra buffers as possible tmp = ((X - unsqueeze_all(sum) / N) * grad_out).sum(dim=(0, 2, 3)) tmp *= -1 d_denom = tmp / (sqrt_var + eps)**2 # d_denom = -num / denom**2 # It is useful to delete tensors when you no longer need them with `del` # For example, we could've done `del tmp` here because we won't use it later # In this case, it's not a big difference because tmp only has size of (C,) # The important thing is avoid allocating NCHW-sized tensors unnecessarily d_var = d_denom / (2 * sqrt_var) # denom = torch.sqrt(var) + eps # Compute d_mean_dx before allocating the final NCHW-sized grad_input buffer d_mean_dx = grad_out / unsqueeze_all(sqrt_var + eps) d_mean_dx = unsqueeze_all(-d_mean_dx.sum(dim=(0, 2, 3)) / N) # d_mean_dx has already been reassigned to a C-sized buffer so no need to worry # (1) unbiased_var(x) = ((X - unsqueeze_all(mean))**2).sum(dim=(0, 2, 3)) / (N - 1) grad_input = X * unsqueeze_all(d_var * N) grad_input += unsqueeze_all(-d_var * sum) grad_input *= 2 / ((N - 1) * N) # (2) mean (see above) grad_input += d_mean_dx # (3) Add 'grad_out / ' without allocating an extra buffer grad_input *= unsqueeze_all(sqrt_var + eps) grad_input += grad_out grad_input /= unsqueeze_all(sqrt_var + eps) # sqrt_var + eps > 0! return grad_input class BatchNorm(torch.autograd.Function): @staticmethod def forward(ctx, X, eps=1e-3): # Don't save keepdim'd values for backward sum = X.sum(dim=(0, 2, 3)) var = X.var(unbiased=True, dim=(0, 2, 3)) N = X.numel() / X.size(1) sqrt_var = torch.sqrt(var) ctx.save_for_backward(X) ctx.eps = eps ctx.sum = sum ctx.N = N ctx.sqrt_var = sqrt_var mean = sum / N denom = sqrt_var + eps out = X - unsqueeze_all(mean) out /= unsqueeze_all(denom) return out @staticmethod @once_differentiable def backward(ctx, grad_out): X, = ctx.saved_tensors return batch_norm_backward(grad_out, X, ctx.sum, ctx.sqrt_var, ctx.N, ctx.eps) Testing with gradcheck .. code-block:: default a = torch.rand(1, 2, 3, 4, requires_grad=True, dtype=torch.double) torch.autograd.gradcheck(BatchNorm.apply, (a,), fast_mode=False) Fusing Convolution and BatchNorm ------------------------------------------------------------------- Now that the bulk of the work has been done, we can combine them together. Note that in (1) we only save a single buffer for backward, but this also means we recompute convolution forward in (5). Also see that in (2), (3), (4), and (6), it's the same exact code as the examples above. .. code-block:: default class FusedConvBN2DFunction(torch.autograd.Function): @staticmethod def forward(ctx, X, conv_weight, eps=1e-3): assert X.ndim == 4 # N, C, H, W # (1) Only need to save this single buffer for backward! ctx.save_for_backward(X, conv_weight) # (2) Exact same Conv2D forward from example above X = F.conv2d(X, conv_weight) # (3) Exact same BatchNorm2D forward from example above sum = X.sum(dim=(0, 2, 3)) var = X.var(unbiased=True, dim=(0, 2, 3)) N = X.numel() / X.size(1) sqrt_var = torch.sqrt(var) ctx.eps = eps ctx.sum = sum ctx.N = N ctx.sqrt_var = sqrt_var mean = sum / N denom = sqrt_var + eps # Try to do as many things in-place as possible # Instead of `out = (X - a) / b`, doing `out = X - a; out /= b` # avoids allocating one extra NCHW-sized buffer here out = X - unsqueeze_all(mean) out /= unsqueeze_all(denom) return out @staticmethod def backward(ctx, grad_out): X, conv_weight, = ctx.saved_tensors # (4) Batch norm backward # (5) We need to recompute conv X_conv_out = F.conv2d(X, conv_weight) grad_out = batch_norm_backward(grad_out, X_conv_out, ctx.sum, ctx.sqrt_var, ctx.N, ctx.eps) # (6) Conv2d backward grad_X, grad_input = convolution_backward(grad_out, X, conv_weight) return grad_X, grad_input, None, None, None, None, None The next step is to wrap our functional variant in a stateful `nn.Module` .. code-block:: default import torch.nn as nn import math class FusedConvBN(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, exp_avg_factor=0.1, eps=1e-3, device=None, dtype=None): super(FusedConvBN, self).__init__() factory_kwargs = {'device': device, 'dtype': dtype} # Conv parameters weight_shape = (out_channels, in_channels, kernel_size, kernel_size) self.conv_weight = nn.Parameter(torch.empty(*weight_shape, **factory_kwargs)) # Batch norm parameters num_features = out_channels self.num_features = num_features self.eps = eps # Initialize self.reset_parameters() def forward(self, X): return FusedConvBN2DFunction.apply(X, self.conv_weight, self.eps) def reset_parameters(self) -> None: nn.init.kaiming_uniform_(self.conv_weight, a=math.sqrt(5)) Use gradcheck to validate the correctness of our backward formula .. code-block:: default weight = torch.rand(5, 3, 3, 3, requires_grad=True, dtype=torch.double) X = torch.rand(2, 3, 4, 4, requires_grad=True, dtype=torch.double) torch.autograd.gradcheck(FusedConvBN2DFunction.apply, (X, weight)) Testing out our new Layer ------------------------------------------------------------------- Use FusedConvBN to train a basic network The code below is after some light modifications to the example here: https://github.com/pytorch/examples/tree/master/mnist .. code-block:: default import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR # Record memory allocated at the end of the forward pass memory_allocated = [[],[]] class Net(nn.Module): def __init__(self, fused=True): super(Net, self).__init__() self.fused = fused if fused: self.convbn1 = FusedConvBN(1, 32, 3) self.convbn2 = FusedConvBN(32, 64, 3) else: self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=False) self.bn1 = nn.BatchNorm2d(32, affine=False, track_running_stats=False) self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=False) self.bn2 = nn.BatchNorm2d(64, affine=False, track_running_stats=False) self.fc1 = nn.Linear(9216, 128) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(128, 10) def forward(self, x): if self.fused: x = self.convbn1(x) else: x = self.conv1(x) x = self.bn1(x) F.relu_(x) if self.fused: x = self.convbn2(x) else: x = self.conv2(x) x = self.bn2(x) F.relu_(x) x = F.max_pool2d(x, 2) F.relu_(x) x = x.flatten(1) x = self.fc1(x) x = self.dropout(x) F.relu_(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) if fused: memory_allocated[0].append(torch.cuda.memory_allocated()) else: memory_allocated[1].append(torch.cuda.memory_allocated()) return output def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 2 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 # Use inference mode instead of no_grad, for free improved test-time performance with torch.inference_mode(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target, reduction='sum').item() # get the index of the max log-probability pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") train_kwargs = {'batch_size': 2048} test_kwargs = {'batch_size': 2048} if use_cuda: cuda_kwargs = {'num_workers': 1, 'pin_memory': True, 'shuffle': True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) dataset1 = datasets.MNIST('../data', train=True, download=True, transform=transform) dataset2 = datasets.MNIST('../data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/MNIST/raw/train-images-idx3-ubyte.gz Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/MNIST/raw/train-labels-idx1-ubyte.gz Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw/t10k-images-idx3-ubyte.gz Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw A Comparison of Memory Usage ------------------------------------------------------------------- If cuda is enabled, print out memory usage for both `fused=True` and `fused=False` For an example run on RTX 3070, CuDNN 8.0.5: fused peak memory: 1.56GB, unfused peak memory: 2.68GB It is important to note that the *peak* memory usage for this model may vary depending the specific CuDNN convolution algorithm used. For shallower models, it may be possible for the peak memory allocated of the fused model to exceed that of the unfused model! This is because the memory allocated to compute certain CuDNN convolution algorithms can be high enough to "hide" the typical peak you would expect to be near the start of the backward pass. For this reason, we also record and display the memory allocated at the end of the forward pass as an approximation, and to demonstrate that we indeed allocate one fewer buffer per fused conv-bn pair. .. code-block:: default from statistics import mean torch.backends.cudnn.enabled = True if use_cuda: peak_memory_allocated = [] for fused in (True, False): torch.manual_seed(123456) model = Net(fused=fused).to(device) optimizer = optim.Adadelta(model.parameters(), lr=1.0) scheduler = StepLR(optimizer, step_size=1, gamma=0.7) for epoch in range(1): train(model, device, train_loader, optimizer, epoch) test(model, device, test_loader) scheduler.step() peak_memory_allocated.append(torch.cuda.max_memory_allocated()) torch.cuda.reset_peak_memory_stats() print("CuDNN version:", torch.backends.cudnn.version()) print() print("Peak memory allocated:") print(f"fused: {peak_memory_allocated[0]/1024**3:.2f}GB, unfused: {peak_memory_allocated[1]/1024**3:.2f}GB") print("Memory allocated at end of forward pass:") print(f"fused: {mean(memory_allocated[0])/1024**3:.2f}GB, unfused: {mean(memory_allocated[1])/1024**3:.2f}GB") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Train Epoch: 0 [0/60000 (0%)] Loss: 2.352059 Train Epoch: 0 [4096/60000 (7%)] Loss: 7.320500 Train Epoch: 0 [8192/60000 (13%)] Loss: 4.263867 Train Epoch: 0 [12288/60000 (20%)] Loss: 2.919997 Train Epoch: 0 [16384/60000 (27%)] Loss: 2.649006 Train Epoch: 0 [20480/60000 (33%)] Loss: 1.818971 Train Epoch: 0 [24576/60000 (40%)] Loss: 1.518931 Train Epoch: 0 [28672/60000 (47%)] Loss: 1.660003 Train Epoch: 0 [32768/60000 (53%)] Loss: 1.615571 Train Epoch: 0 [36864/60000 (60%)] Loss: 1.641139 Train Epoch: 0 [40960/60000 (67%)] Loss: 1.247784 Train Epoch: 0 [45056/60000 (73%)] Loss: 1.089144 Train Epoch: 0 [49152/60000 (80%)] Loss: 1.148825 Train Epoch: 0 [53248/60000 (87%)] Loss: 0.937577 Train Epoch: 0 [57344/60000 (93%)] Loss: 0.830027 Test set: Average loss: 0.4158, Accuracy: 8631/10000 (86%) Train Epoch: 0 [0/60000 (0%)] Loss: 2.352356 Train Epoch: 0 [4096/60000 (7%)] Loss: 7.323086 Train Epoch: 0 [8192/60000 (13%)] Loss: 4.011078 Train Epoch: 0 [12288/60000 (20%)] Loss: 2.066437 Train Epoch: 0 [16384/60000 (27%)] Loss: 2.217048 Train Epoch: 0 [20480/60000 (33%)] Loss: 1.890088 Train Epoch: 0 [24576/60000 (40%)] Loss: 1.640150 Train Epoch: 0 [28672/60000 (47%)] Loss: 1.428693 Train Epoch: 0 [32768/60000 (53%)] Loss: 1.321805 Train Epoch: 0 [36864/60000 (60%)] Loss: 1.876287 Train Epoch: 0 [40960/60000 (67%)] Loss: 1.054769 Train Epoch: 0 [45056/60000 (73%)] Loss: 0.870653 Train Epoch: 0 [49152/60000 (80%)] Loss: 0.823031 Train Epoch: 0 [53248/60000 (87%)] Loss: 0.980033 Train Epoch: 0 [57344/60000 (93%)] Loss: 0.777425 Test set: Average loss: 0.3813, Accuracy: 9012/10000 (90%) CuDNN version: 7605 Peak memory allocated: fused: 2.29GB, unfused: 1.48GB Memory allocated at end of forward pass: fused: 0.58GB, unfused: 0.95GB .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 25.476 seconds) .. _sphx_glr_download_intermediate_custom_function_conv_bn_tutorial.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: custom_function_conv_bn_tutorial.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: custom_function_conv_bn_tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_