.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_beginner_audio_datasets_tutorial.py: Audio Datasets ======== ``torchaudio`` provides easy access to common, publicly accessible datasets. Please refer to the official documentation for the list of available datasets. .. code-block:: default # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio import torch import torchaudio print(torch.__version__) print(torchaudio.__version__) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none 1.11.0+cu102 0.11.0+cu102 Preparing data and utility functions (skip this section) -------------------------------------------------------- .. code-block:: default #@title Prepare data and utility functions. {display-mode: "form"} #@markdown #@markdown You do not need to look into this cell. #@markdown Just execute once and you are good to go. #------------------------------------------------------------------------------- # Preparation of data and helper functions. #------------------------------------------------------------------------------- import multiprocessing import os import matplotlib.pyplot as plt from IPython.display import Audio, display _SAMPLE_DIR = "_sample_data" YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no") os.makedirs(YESNO_DATASET_PATH, exist_ok=True) def _download_yesno(): if os.path.exists(os.path.join(YESNO_DATASET_PATH, "waves_yesno.tar.gz")): return torchaudio.datasets.YESNO(root=YESNO_DATASET_PATH, download=True) YESNO_DOWNLOAD_PROCESS = multiprocessing.Process(target=_download_yesno) YESNO_DOWNLOAD_PROCESS.start() def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None): waveform = waveform.numpy() num_channels, num_frames = waveform.shape time_axis = torch.arange(0, num_frames) / sample_rate figure, axes = plt.subplots(num_channels, 1) if num_channels == 1: axes = [axes] for c in range(num_channels): axes[c].specgram(waveform[c], Fs=sample_rate) if num_channels > 1: axes[c].set_ylabel(f'Channel {c+1}') if xlim: axes[c].set_xlim(xlim) figure.suptitle(title) plt.show(block=False) def play_audio(waveform, sample_rate): waveform = waveform.numpy() num_channels, num_frames = waveform.shape if num_channels == 1: display(Audio(waveform[0], rate=sample_rate)) elif num_channels == 2: display(Audio((waveform[0], waveform[1]), rate=sample_rate)) else: raise ValueError("Waveform with more than 2 channels are not supported.") Here, we show how to use the ``YESNO`` dataset. .. code-block:: default YESNO_DOWNLOAD_PROCESS.join() dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True) for i in [1, 3, 5]: waveform, sample_rate, label = dataset[i] plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}") play_audio(waveform, sample_rate) .. rst-class:: sphx-glr-horizontal * .. image:: /beginner/images/sphx_glr_audio_datasets_tutorial_001.png :class: sphx-glr-multi-img * .. image:: /beginner/images/sphx_glr_audio_datasets_tutorial_002.png :class: sphx-glr-multi-img * .. image:: /beginner/images/sphx_glr_audio_datasets_tutorial_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 3.243 seconds) .. _sphx_glr_download_beginner_audio_datasets_tutorial.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: audio_datasets_tutorial.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: audio_datasets_tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_